SGXOoMETER: Open and Modular Benchmarking for Intel SGX

Mohammad Mahhouk

TU Braunschweig, Germany

ABSTRACT

Intel’s Software Guard Extensions (SGX) are currently the most
wide-spread commodity trusted execution environment, which
provides integrity and confidentiality of sensitive code and data.
Thereby, it offers protection even against privileged attackers and
various forms of physical attacks. As a technology that only be-
came available in late 2015, it has received massive interest and
undergone a rapid evolution. Despite first ad-hoc attempts, there is
so far no standardised approach to benchmark the SGX hardware,
its associated environment, and techniques that were designed to
harden SGX-based applications.

In this paper, we present SGXOMETER, an open and modular
framework designed to benchmark different SGX-aware CPUs,
picode revisions, SDK versions and extensions to mitigate side-
channel attacks. SGXOMETER provides a set of practical SGX test
case scenarios and eases the development of custom benchmarks.
Furthermore, we compare it to sgx-nbench, the only other SGX
application benchmark tool we are aware of, and evaluate their
differences. Through our benchmark results, we identified a perfor-
mance overhead of up to ~10 times induced between two different
SGX-SDK versions for certain workload scenarios.
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1 INTRODUCTION

The development of hardware-based trusted execution environ-
ments (TEEs) has gained a lot of interest lately because they offer
security and protection from a variety of threats including poten-
tially compromised operating systems, kernel exploits and untrust-
worthy cloud services [20]. Hardware-based TEEs have found usage
in wide range of devices, e.g., ARM’s TrustZone [29] is deployed in
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mobile devices like phones and tablets. Also, personal computers,
laptops and servers can be secured using AMD Secure Encrypted
Virtualisation [22, 23], and Intel SGX [24, 27].

Intel SGX promises with its isolated memory regions, so called
enclaves, both confidentiality and integrity protection of the sen-
sitive data and code running inside them against malicious and
privileged software. It also provides local and remote attestation
mechanisms [21] to ensure the authenticity and integrity of the
running enclaves, adding protection against forging attempts. Thus,
the utilisation of SGX in cloud services can considerably reduce
the customers’ reluctance of using them. Furthermore, Intel has re-
leased a Software Development Kit (SDK) [18] to ease programming
with SGX. It introduces wrappers for low-level instructions and
provides a high-level interface that offers multiple functionalities,
such as enclave initialisation, and parameterised transition func-
tions into and outside an enclave. The strong security guarantees
and the ease of development with the SGX-SDK paved the way
to deploy SGX in the mainstream industry, like the confidential
clouds of Microsoft Azure [8]. In addition, it enabled the creation
of diverse secure applications, such as Signal [10], SecureKeeper
[12] and the confidential computing consortium projects [9].

Currently, SGX technology is maturing rapidly through more
instruction set changes, continuous releases of new drivers and
pucode patches [18, 19]. It has also been extensively analysed how
to enhance the security of SGX against malicious activities such
as controlled and side-channel attacks [15, 16, 30, 34]. Therefore,
Intel is actively updating the SDK releases to address and mitigate
these attacks. All of the aforementioned factors have various impact
on the overall performance of SGX-secured applications and will
remain a challenge for future developments. For example, SDK
mitigation patches against Spectre [25] and Foreshadow [13] add
extra performance overhead for enclave transitions of up to 2.24x
compared to the original costs [32]. Multiple research projects
have observed 5.5% performance overhead upon exceeding the L3
cache size and 1000x when the Enclave Page Cache (EPC) limit is
exceeded due to the costly enclave paging [11, 12]. However, at
the moment there is no easy to use and suitable benchmark tool
designed for SGX. A standard application benchmark framework is
necessary for both proprietary and research projects. It can inspect
the performance overhead in different environment configurations
and allows researchers to reproduce their results and compare them
to other research projects.

The contributions of this paper are organised as follows:

e We analyse a commonly used SGX application benchmark,
called sgx-nbench [6], and identify fundamental flaws.

e Weimplement a standardised and modular application bench-
mark framework for Intel SGX called SGXOMETER.

e We illustrate the performance degradation induced by the
development progression of the SGX-SDK.

The rest of the paper is structured as follows. In § 2 we provide a
brief introduction into SGX and the associated limitations followed
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by some related work. Afterwards, we present sgx-nbench and
discuss its flaws in § 3. In § 4, we introduce SGXoMETER followed
by some evaluation results in § 5. Lastly, we elaborate more on
future plans for the framework in § 6 and in § 7 we draw some
conclusions.

2 BACKGROUND & RELATED WORK

In this section, we give an introduction into SGX and the bundled
SDK from Intel including the accompanied restrictions and induced
performance issues. Finally, we discuss some of the related work.

2.1 Software Guard Extensions

Intel has extended the x86 instruction set with new instructions to
support its novel CPU feature Software Guard Extensions (SGX)
[14, 27]. It adds a strong security property to sensitive code and
data through secured compartments called enclaves.

Enclaves provide confidentiality and integrity protection with
the support of the hardware. They are stored in a special section
of the system memory called Enclave Page Cache (EPC) which
is reserved by the processor at boot time. Currently, SGX limits
the size of the EPC to 128 MiB, from which only ~ 96 MiB can be
utilised for enclave pages. Recently, the total EPC size was extended
to 256 MiB with ~ 188 MiB usable for enclave pages [2].

2.2 SGX Software Development Kit

Shortly after the release of SGX, Intel followed it with a Software De-
velopment Kit (SDK) [18] to ease the development of SGX-enabled
applications. The SDK adds another level of abstraction of en-
clave transitions and introduces a new way of enclave interactions
through ecalls and ocalls. Ecalls cross over the secure borders of an
enclave from the untrusted part and vice versa for the ocalls. The
resulting application is divided into two pieces, the trusted part
containing the enclave’s sensitive code, and the remainder of the
program located in the untrusted part. The SDK also introduced
the Un—/Trusted Runtime System (U/T-RTS), where the enclave
transitions are handled. Ecalls and ocalls are described by the de-
velopers in an interface-like form using the Enclave Description
Language (EDL). Later, the SDK’s code generator, sgx_edgers3r,
generates wrapper code from this EDL file, which will be com-
piled and linked into the developed SGX application. Moreover, the
SDK provides a trusted cryptography library, which contains basic
encryption and decryption functions, and an SGX custom-made
version of C/C++ standard library where functionalities that require
unpermitted system calls are excluded. However, as a workaround,
these functions can be outsourced by an appropriate ocall.

2.3 Limitations & Performance Issues

Reasonably, SGX’s strong security guarantees inflict a performance
overhead caused by multiple factors. First, enclave transitions, such
as entering the trusted environment and executing code in it, are
costly because of the security checks done at the enclaves bound-
aries or at the accessed memory buffers. As mentioned earlier, some
system calls are not allowed inside the enclave. Therefore, an ocall
needs to occur before desired system call, e.g., I/O operations [17]
can be performed. This also impacts the performance especially
when used frequently [11, 28].
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The second major reason is enclave paging. Since the EPC size is
limited, the SGX driver provides support for enclave paging from
the EPC to the main memory to handle the oversized enclaves. Any
enclave that exceeds the EPC’s size limit would result in the previ-
ously mentioned paging process where enclave pages are encrypted
before casting them out to the DRAM. However, this process has
an overhead of up to three orders of magnitude depending on the
memory access pattern [11, 12].

Considering the above limitations among others, SGX enabled
applications should be built very carefully. Otherwise, it will result
in impractical performance for products. Several research projects
[11, 28, 33] proposed different mechanisms and concepts to mitigate
the performance overhead of enclave transitions. However, these
are either proprietary projects or require the application develop-
ment to adapt to new programming paradigms [32].

2.4 Related Work

Some research papers executed micro-benchmarks to evaluate the
previously stated factors for the performance overhead while utilis-
ing SGX. Weisse et al. [33] measured the overhead induced by the
enclave transitions of the SDK’s ecalls and ocalls and noticed an
increase of about 8,600 to 14,000 cycles. Weichbrodt et al. [32] also
ran overhead measurements for the same enclave transition, but
in multiple settings scenarios and came up with similar results. In
some cases, they applied pcode updates, which increased the secu-
rity checks against side-channels attacks. Thus, they observed even
higher overheads. Other papers, such as SCONE [11] and Secure-
Keeper [12], have measured the impact of enclave paging on the
performance. They observed an overhead of 5.5x upon exceeding
the L3 cache size, and 1000x when hitting the EPC’s size limit and
above. All the aforementioned related works provide either only
micro-benchmarks for specific scenarios, such as the enclave tran-
sitions performance overhead, or profiling and dynamic analysis
tools of the executed SGX applications such as sgx-perf [32].

For research as well as industry SGX-related projects, it is im-
portant to have a standard application benchmark framework to
measure the impact of the conducted changes into the SGX tech-
nology on the overall performance. In essence, it can be utilised
after applying picode patches to mitigate malicious attacks or updat-
ing SGX applications with the newest SDK version to measure the
additional performance overhead costs. Moreover, due to the stan-
dardisation, this would allow researchers to compare and reproduce
their results.

There are several research papers [15, 16, 30] that contributed
mitigation mechanisms against some side- and controlled-channel
attacks. However, the increase in security mostly incurs some per-
formance loss. Therefore, Fu et al. [15] ported the ten benchmark
programs from nbench-byte [1] into SGX to measure the overhead of
their solution. They named it sgx-nbench and published it as an open
source benchmark tool for SGX [6]. Due to the lack of application
benchmark tools for SGX, sgx-nbench was used in other research
papers [15, 16, 30] for their evaluations. Other researchers rather
opted to port the nbench-byte benchmark programs themselves
[30]. However, they did not provide the source code of their imple-
mentation, which leaves us only speculations and presumptions of
committing similar flaws as the detected ones in sgx-nbench.
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3 ANALYSIS OF SGX-NBENCH

In this section, we will take a closer look at sgx-nbench and explain
its architecture and workflow. Then, we evaluate it based on two
criteria, namely usability and its suitability as an SGX benchmark
tool including each one of the ten ported programs separately. The
correctness of the algorithm implementation of each benchmark
program is orthogonal to this work. So, we assume that they were
directly adopted from the original nbench-byte [1] tool. It is note-
worthy that nbench-byte was developed in the mid-1990s. Hence,
some of our evaluations are affected by this fact as well.

3.1 Design of sgx-nbench

The structure of sgx-nbench is composed of three components:
I) The untrusted part, app, is where wrapper calls for all avail-
able ecalls are defined and an ocall for output purposes are imple-
mented. It also contains the main function that does the enclave
initialisation/destruction and executes the benchmark programs.
II) The trusted part, enclave, consists of multiple source and header
files that contain the SGX-port implementation of the ten bench-
mark programs, which are the following: 1-2) Numeric & string
heap sort 3) Bit operations 4) Floating-point emulation 5) Signal
processing using Fourier transformation 6) Assignment algorithm
7) Cryptographic operations using an international data encryp-
tion algorithm 8) Compression operation using Huffman 9) Back-
propagation network simulation 10) Linear equations solving al-
gorithm. IIT) The transition part, nbench, is where the tool’s logic
setup is located. It parses the input, sets up the global configurations,
executes each benchmark program including pre/post-functions
for initialisation and clean up purposes, and lastly processes the
extracted results and generates statistics.

3.2 Workflow

The execution of sgx-nbench runs in three phases. In the first phase,
it parses the input and allows to pass a configuration file. The user
can use the latter to specify which tests to run and to adjust the
configuration of the chosen programs, such as the size of the used
memory buffers, number of loops or maximum time interval for
each test iteration. In the second phase, it runs the benchmark
programs in a fixed order. First, each program is executed five times
and the results are stored in a fixed size array of maximum 30
entries. Then, it calculates the 95% confidence-half-interval of the
generated results using the student-t-distribution with 29 degrees of
freedom. As long as the value is not less than 1% of the results’ mean
value and the number of executions did not reach the limit (30x),
then a new execution entry will be added to the result’s array and
the same calculations will be repeated. However, if one of the two
above conditions is met, the mean value is stored for comparison
and statistics purposes later in the third phase. Furthermore, in case
the execution limit cap is reached while the first condition is still
not met, then an error message regarding the inaccurate result of
the executed benchmark program is returned. Thereafter, the same
process is repeated for the subsequent benchmark programs.

By default, the first execution of each program does an adjust-
ment step to initialise the used memory buffers with a predefined
size inside the enclave and load them with pseudo random con-
tent. This pre-process is limited to a predefined number of cycles.
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Thus, the adjustment step is repeated with an incremented size of
memory until it surpasses the fixed cycles rate to adaptively set the
workload based on the CPU’s performance. Afterwards, the actual
benchmark process is executed via an ecall on the previously loaded
data. This ecall is repeated in a loop fixed by a predefined time con-
dition, meanwhile a counter is incremented for each iteration. Once
the time condition is exceeded, the result is stored in form of the
number of iterations per second. Eventually, a post-execution step
takes place to free and clean up the used memory buffers.

The third and last phase is where the calculated statistics of each
completed benchmark are outputted in a textual form in the console.
By default, the mean value of the gathered results of each bench-
mark is calculated. Afterwards, it is compared to two hard-coded
results of the same benchmark on two other different machines,
DELL Pentium XP90 and AMD Ké6-233.

3.3 Evaluation

We summarise the evaluation of sgx-nbench in two sections starting
with usability. The documentation is not sufficient which diminishes
the usability as well as the comprehensibility of the tool. Further-
more, due to the missing usage documentation, one would run the
benchmark with the default hard-coded configuration values. We
noticed that some of them are rather impractical. For instance, the
default cycle rate used for the adjustment step is set to 60 cycles
which is not even sufficient for the enclave transition itself [32]. As
a consequence, the adjustment step would always end up doing the
same configurations. Thus, making it without a startup configura-
tion file obsolete. Moreover, sgx-nbench does not have a warm-up
phase. Although it is not really necessary for CPU heavy opera-
tions, we believe that heavy memory benchmarks could benefit
from a warm-up phase to avoid outlier results caused by caching
and to provide more accurate results since only a maximum of 30
samples are gathered for each single benchmark program. Another
slight drawback we found was that the output results were not
very intuitive due to the lack of documentation. The first column
of the output shows the performance of the running machine (it-
erations/sec). However, the second and the third column show by
which factor the current machine is faster than two other different
ones. Moreover, the specifications of these machines are not com-
pletely provided and both ran on an outdated kernel version and
an old C standard library.

We also analysed sgx-nbench regarding potential flaws and its
suitability as an SGX benchmark tool. Aside from the cryptographic
operations, compression and signal processing, the other seven
benchmark programs are not critically security sensitive. Thus,
despite their CPU intensive computations, they do not entirely fit
as SGX-related benchmark programs. Furthermore, the loop step of
the benchmark process measures not only the program’s execution
time but also the enclave transitions. Therefore, programs, like
Bit-Flip, have sometimes shorter execution times than the enclave
transition itself causing the generation of unreasonable results.

In summary, based on the aforementioned analysis and the cur-
rent code quality (e.g. scattered hardcoded values and glue code) of
sgx-nbench, we decided to implement the SGXOMETER framework.
It addresses these issues and provides more accurate SGX-tailored
benchmarking results.
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Figure 1: Hierarchy of SGXOMETER build structure

4 THE SGXOMETER FRAMEWORK

In this section, we present SGXOMETER, an application benchmark
framework for Intel SGX. It offers an abstract, modular and multi-
threaded way of executing SGX application benchmarks while tak-
ing the detected problems mentioned in § 3.3 into consideration.

The SGXoMETER framework is developed using the C/C++ pro-
gramming language and CMake as a build manager. The latter
enabled us to build the framework in a modular way, such that
every test application we implemented, also referred to as module,
can be added or removed at compilation time. Thus, resulting in a
variable sized enclave and several possible benchmark variants.

As can be seen in Figure 1, the hierarchy of SGXoMETER's CMake
structure is divided into three levels based on their location depth
in the framework’s file structure. The outermost space, level 1, is
where the environment configurations are set up such as fetching
SGX-SDK’s libraries whereabouts, setting global compilation vari-
ables and installing needed dependencies like Intel SGX-SSL. Then
follows the module configuration step in level 2. Common variables,
macros and functions as well as important pre-compiler definitions
for the default configuration values are defined there. The latter are
visualised in the user-interface allowing selection or value modifi-
cation. They also provide a brief overall description when hovering
over them. Furthermore, default configuration values can be set at
runtime using the command line arguments at the start. The build
phase comes last at level 3, where the makefiles for the actual tool
are generated based on the pre-configuration set in the earlier two
stages. Eventually three executables can be built, a baseline and an
SGX-Application, where the latter can be set either in hardware
or simulation mode. These three variants execute the same cho-
sen benchmark modules. However, the baseline only differs from
the other two in running the test modules natively without SGX
primitives. Therefore, this is the key condition to see how efficient
utilising SGX in some sensitive procedures could be.

Figure 2 shows an overview of the framework’s workflow. The
first step @ is to setup the build folder, configure the tool, select
the benchmark modules, and set the default values of the global
variables. This can be done either using the graphical user interface
or by manually editing the appropriate CMake files. Thereafter, the
generated makefiles @ build the framework’s executables, baseline
and SGX-Application, with the chosen benchmark modules and
the predefined global values. Upon launching either of the executa-
bles, both go through similar procedures. At the start, the passed
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Figure 2: Architecture of SGXOMETER

command line arguments € get parsed and a global configuration
data structure is declared and defined with either the default or the
passed values. Afterwards, an enclave is initialised and pointers to
a shared counter and to the early mentioned global data structure
are passed to it. Then, by default, two threads are created one for
measurement @ and the other for running the benchmark modules
@ inside the enclave. However, the framework also allows multiple
in-enclave benchmark threads with separate counters to avoid syn-
chronisation costs. For simplicity, we continue the illustration with
a single benchmark thread. Upon creating the benchmark thread,
the measurement thread will be paused until the pre-benchmark
phase is finished. Thereafter, a signal from the main thread will
trigger both threads, measurement and benchmark, to change their
status to "running". At that moment, the benchmark thread starts
its execution loop on the current module and increments the shared
counter after each complete iteration. Meanwhile, the measurement
thread runs in two stages, warm-up and real runtime, respectively.
At the end of each stage, it logs the current value of the shared
counter, number of iteration per second and the executed module’s
name. If the runtime stage is finished and there are still other mod-
ules to benchmark, the measurement thread signals the benchmark
thread to set its status to "paused’, leave its execution loop and
enter the post-benchmark phase for cleaning up. Subsequently, the
process repeats itself @ for the next module in the list. Finally, if all
modules are successfully benchmarked, both threads are stopped
and the main thread takes control back again. It harvests the previ-
ously logged results and either outsources @ them in a CSV format
to an external file or outputs them back in the terminal. Eventually,
the main thread @ destroys the enclave, cleans up used allocated
memories and terminates the executable.

To avoid additional costs, the measured benchmark loop is kept
minimal and it only contains the execution of the corresponding
module’s function and the incremented shared counter.
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Figure 3: DNA pattern matching benchmark module

We provide various benchmark modules which are mostly de-
rived from the Intel SGX-SSL library [5] such as RSA and elliptic
curve key generation, hashing using SHA256, en-decryption and
signing/verification using RSA, and elliptic curve combined with
diffie hellman and DSA. Furthermore, we analysed the source code
of the Seeq library (see § 5) and implemented an SGX port for it
and then add it as a module in the provided benchmark modules
pool. To achieve this, we replaced all unsupported functions with
SGX capable implementation such as I/O operations. Moreover, we
modified the structure to reduce enclave transitions to a minimum.

Due to the modularity property of the framework, we also pro-
vided an interface-like file for custom benchmark module purposes.
It enables third-parties to benchmark their SGX applications by
implementing the three essential functions delivered with the in-
terface. One is called in the pre-benchmark phase for the potential
necessary preparations, the second executes the custom application
and is placed inside the benchmark-loop, and the last one is called
in the post-benchmark phase for releasing the reserved resources.

Lastly, we believe that such modules are good candidates as
practical SGX test-applications considering their security sensitive
nature as well as the complexity of the performed computations.

5 EVALUATION

In this section, we present our SGX-port of the DNA pattern match-
ing library Seeq [4] followed by the results of the conducted bench-
mark on some of the implemented modules. SGXOMETER was suc-
cessfully tested on three machines with different system specifica-
tions. The shown experiments results were gathered from a server
machine that runs on Ubuntu 18.04 LTS with Linux 4.15.0-136-
generic. Its hardware consists of an Intel Xeon E-2176G @ 3.70 GHz
processor and 32 GB (@ 2666 MHz) of memory. All experiments
were conducted with the same configuration 10s for warm-up and
60s for runtime. Our Baseline is running the same benchmark mod-
ules without SGX primitives.

Seeq [4] is an open source C library. It implements a DNA/RNA
pattern matching algorithm that uses the Levenshtein distance met-
ric [26] while performing sequence matching. As input, a file con-
taining the DNA sequence alongside the DNA pattern are passed
as application arguments. By default, Seeq searches the sequence
for the given pattern and returns the number of each line where
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the pattern has been detected. However, Seeq also offers additional
flags to support other options and configurations, such as setting
the maximum Levenshtein distance, defining the behaviour when
detecting a non-DNA character, format and misc flags. Furthermore,
Seeq also provides functions for sequence extraction and trimming.

Figure 3 shows the performance degradation between two dif-
ferent SGX-SDK versions (2.7 and 2.12) while running the DNA
pattern matching benchmark on DNA sequences of different sizes
searching for the same pattern. By default, Seeq prints the results
out in the terminal but we omit them to avoid unnecessary enclave
transition overhead costs. As can be seen, the performance of the
new SDK releases degrade by nearly a factor of ~ 10 compared
to the baseline and ~ 9 compared to an older SDK version. This
performance overhead is most probably caused by Intel’s mitigation
mechanisms added to the SDK by each new release. Furthermore,
the performance converges to more stable and comparable val-
ues the bigger the examined DNA size gets. This is because the
pattern matching operation costs are significantly larger than the
conducted defensive measures.

To make sure of this performance degradation, we ran other
benchmark modules. For example, Figure 4 presents the results of
running Intel’s SGX-SSL port of the SHA256 on strings of differ-
ent sizes. Due to hashing optimisations of short strings sizes, the
performance starts to decay for sizes (> 64Bytes). However, the
same performance reduction pattern can be observed here as well.
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The throughput of the newer SDK version has been decreased by
a factor of ~ 10 for small string sizes compared to baseline and
by a factor of ~ 5 compared to the older SDK version. For bigger
string sizes, hashing gets more costly and the performance overhead
differences become negligible.

We have also performed a variety of RSA benchmarks using
Intel’s SGX-SSL [5] implementation. For example, we benchmarked
the en/decryption using RSA key pairs on strings with maximal
possible sizes, which is the RSA’s key byte size minus eleven. As
shown in Figure 5, the impact of the newer SDK version is again
only observable for small string sizes.

With the SGXoMETER framework, we are able to provide accu-
rate and reproducible measurements in different system environ-
ment configurations. It allowed us to trace the discovered perfor-
mance degradation back to the different SGX-SDK versions. More
precisely, we repeated the benchmark process for the SGX-SDK
versions between 2.7 and 2.12 with the same modules and identi-
fied an observable overhead jump starting with the 2.8 version. In
addition, SGXOMETER targets standardisation and usage in a wider
range of scenarios as we show in § 6.

6 FUTURE WORK

As anext step, we are planning to port sgx-nbench’s test programs in
our framework and compare the generated results. Furthermore, we
are considering to include an SGX port of the libsodium library [3]
into our framework and add its various security sensitive crypto-
graphic functionalities as benchmark modules. We also want to
compare some hardware accelerated cryptographic mechanisms
from different libraries, such as AES implementation in libsodium,
SGX-SDK and Intel SGX-SSL. Sensitive OpenCV applications, such
as face or fingerprint detection, are planned as well and we will
port the necessary functions into SGX. Aside from adding new
benchmark modules, we want to improve the usability of the code
by implementing more features. For example, the ability to modify
the enclave’s configuration file by using the graphical user interface
in the pre-compilation phase. In addition, provide a configuration
option to include the enclave transitions, ecalls and ocalls, in the
measurement. Moreover, add support to other SDK features like
multiple enclaves and switchless enclave transition calls. Additional
benchmark support to applications relying on other SGX frame-
works like open-enclave [7] and Graphene-SGX [31] is of interest
and will be investigated.

7 CONCLUSION

In this paper, we presented SGXOMETER to address the lack and
necessity of standardised application benchmark tools for SGX ap-
plications. Due to the rapid development of Intel’s SGX ecosystem
and enhanced hardening against malicious controlled and side-
channel attacks, the overall performance might vary substantially
for several use-case scenarios. SGXOMETER is a modular multi-
threaded application benchmark framework that measures the pure
performance of SGX while excluding unnecessary costly enclave
transitions. It offers a collection of suitable benchmark modules and
allows the extension of custom ones through an interface that is
easy to implement. Furthermore, it enables researchers to reproduce
their results for various configurations, such as different pucode or

Mahhouk et al.

SGX-SDK versions, and compare them against other related works.
Finally, we were able to detect a performance degradation by a
factor of up to ~ 10X between two different SDK versions. The
source code is available on GitHub!.
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